Galois theory of special trinomials
نویسندگان
چکیده
This is the material which I presented at the 60th birthday conference of my good friend José Luis Vicente in Seville in September 2001. It is based on the nine lectures, now called sections, which were given by me at Purdue in Spring 1997. This should provide a good calculational background for the Galois theory of vectorial (= additive) polynomials and their iterates.
منابع مشابه
A History of Selected Topics in Categorical Algebra I: From Galois Theory to Abstract Commutators and Internal Groupoids
This paper is a chronological survey, with no proofs, of a direction in categorical algebra, which is based on categorical Galois theory and involves generalized central extensions, commutators, and internal groupoids in Barr exact Mal’tsev and more general categories. Galois theory proposes a notion of central extension, and motivates the study of internal groupoids, which is then used as an a...
متن کاملFactorization of Trinomials over Galoisfields
We study the parity of the number of irreducible factors of trinomials over Galois elds of characteristic 2. As a consequence , some suucient conditions for a trinomial being reducible are obtained. For example, x n + ax k + b 2 GF (2 t))x] is reducible if both n; t are even, except possibly when n = 2k, k odd. The case t = 1 was treated by R.G.Swan 10], who showed that x n + x k + 1 is reducib...
متن کاملGalois corings from the descent theory point of view
We introduce Galois corings, and give a survey of properties that have been obtained so far. The Definition is motivated using descent theory, and we show that classical Galois theory, Hopf-Galois theory and coalgebra Galois theory can be obtained as a special case.
متن کاملDeformation of Outer Representations of Galois Group
To a hyperbolic smooth curve defined over a number-field one naturally associates an "anabelian" representation of the absolute Galois group of the base field landing in outer automorphism group of the algebraic fundamental group. In this paper, we introduce several deformation problems for Lie-algebra versions of the above representation and show that, this way we get a richer structure than t...
متن کاملOn the Primitivity of some Trinomials over Finite Fields
In this paper, we give conditions under which the trinomials of the form x + ax + b over finite field Fpm are not primitive and conditions under which there are no primitive trinomials of the form x +ax+b over finite field Fpm . For finite field F4, We show that there are no primitive trinomials of the form x + x + α, if n ≡ 1 mod 3 or n ≡ 0 mod 3 or n ≡ 4 mod 5.
متن کامل